Measurement bias detection through Bayesian factor analysis
نویسندگان
چکیده
Measurement bias has been defined as a violation of measurement invariance. Potential violators-variables that possibly violate measurement invariance-can be investigated through restricted factor analysis (RFA). The purpose of the present paper is to investigate a Bayesian approach to estimate RFA models with interaction effects, in order to detect uniform and nonuniform measurement bias. Because modeling nonuniform bias requires an interaction term, it is more complicated than modeling uniform bias. The Bayesian approach seems especially suited for such complex models. In a simulation study we vary the type of bias (uniform, nonuniform), the type of violator (observed continuous, observed dichotomous, latent continuous), and the correlation between the trait and the violator (0.0, 0.5). For each condition, 100 sets of data are generated and analyzed. We examine the accuracy of the parameter estimates and the performance of two bias detection procedures, based on the DIC fit statistic, in Bayesian RFA. Results show that the accuracy of the estimated parameters is satisfactory. Bias detection rates are high in all conditions with an observed violator, and still satisfactory in all other conditions.
منابع مشابه
Detection of and Adjustment for Multiple Unmeasured Confounding Variables in Logistic Regression by Bayesian Structural Equation Modeling
Aim: To compare the bias magnitude between logistic regression and Bayesian structural equation modeling (SEM) in a small sample with strong unmeasured confounding from two correlated latent variables. Study Design: Statistical analysis of artificial data. Methodology: Artificial binary data with above characteristics were generated and analyzed by logistic regression and Bayesian SEM over a pl...
متن کاملBayesian Galaxy Shape Measurement for Weak Lensing Surveys -II. Application to Simulations
In this paper we extend the Bayesian model fitting shape measurement method presented in Miller et al. (2007) and use the method to estimate the shear from the Shear TEsting Programme simulations (STEP). The method uses a fast model fitting algorithm which uses realistic galaxy profiles and analytically marginalises over the position and amplitude of the model by doing the model fitting in Four...
متن کاملDetection of Unknown Confounders by Bayesian Confirmatory Factor Analysis
Artificial data with known covariance structure was used to directly test confounding hypothesis using Bayesian confirmatory factor analysis with small variance informative priors. The priors were derived from two extreme scenarios of no versus maximum confounding via exposure variables. Large (N=5000) and small (N=100) sample analyses were performed for both continuous and binary variable mode...
متن کاملAn introduction to Bayesian hierarchical models with an application in the theory of signal detection.
Although many nonlinear models of cognition have been proposed in the past 50 years, there has been little consideration of corresponding statistical techniques for their analysis. In analyses with nonlinear models, unmodeled variability from the selection of items or participants may lead to asymptotically biased estimation. This asymptotic bias, in turn, renders inference problematic. We show...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کامل